A skin-like two-dimensionally pixelized full-color quantum dot photodetector

See allHide authors and affiliations

Science Advances  22 Nov 2019:
Vol. 5, no. 11, eaax8801
DOI: 10.1126/sciadv.aax8801


Direct full-color photodetectors without sophisticated color filters and interferometric optics have attracted considerable attention for widespread applications. However, difficulties of combining various multispectral semiconductors and improving photon transfer efficiency for high-performance optoelectronic devices have impeded the translation of these platforms into practical realization. Here, we report a low-temperature (<150°C) fabricated two-dimensionally pixelized full-color photodetector by using monolithic integration of various-sized colloidal quantum dots (QDs) and amorphous indium-gallium-zinc-oxide semiconductors. By introducing trap-reduced chelating chalcometallate ligands, highly efficient charge carrier transport and photoresistor-free fine-patterning of QD layers were successfully realized, exhibiting extremely high photodetectivity (>4.2 × 1017 Jones) and photoresponsivity (>8.3 × 103 A W−1) in a broad range of wavelengths (365 to 1310 nm). On the basis of these technologies, a wavelength discriminable phototransistor circuit array (>600 phototransistors) was implemented on a skin-like soft platform, which is expected to be a versatile and scalable approach for wide spectral image sensors and human-oriented biological devices.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances