Research ArticleCELL BIOLOGY

Mechanistic reconstruction of glycoprotein secretion through monitoring of intracellular N-glycan processing

See allHide authors and affiliations

Science Advances  27 Nov 2019:
Vol. 5, no. 11, eaax8930
DOI: 10.1126/sciadv.aax8930

Abstract

N-linked glycosylation plays a fundamental role in determining the thermodynamic stability of proteins and is involved in multiple key biological processes. The mechanistic understanding of the intracellular machinery responsible for the stepwise biosynthesis of N-glycans is still incomplete due to limited understanding of in vivo kinetics of N-glycan processing along the secretory pathway. We present a glycoproteomics approach to monitor the processing of site-specific N-glycans in CHO cells. On the basis of a model-based analysis of structure-specific turnover rates, we provide a kinetic description of intracellular N-glycan processing along the entire secretory pathway. This approach refines and further extends the current knowledge on N-glycans biosynthesis and provides a basis to quantify alterations in the glycoprotein processing machinery.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances