Sculpted grain boundaries in soft crystals

See allHide authors and affiliations

Science Advances  29 Nov 2019:
Vol. 5, no. 11, eaax9112
DOI: 10.1126/sciadv.aax9112


Engineering the grain boundaries of crystalline materials represents an enduring challenge, particularly in the case of soft materials. Grain boundaries, however, can provide preferential sites for chemical reactions, adsorption processes, nucleation of phase transitions, and mechanical transformations. In this work, “soft heteroepitaxy” is used to exert precise control over the lattice orientation of three-dimensional liquid crystalline soft crystals, thereby granting the ability to sculpt the grain boundaries between them. Since these soft crystals are liquid-like in nature, the heteroepitaxy approach introduced here provides a clear strategy to accurately mold liquid-liquid interfaces in structured liquids with a hitherto unavailable level of precision.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances