Research ArticlePHYSICS

Observation of exceptional points in magnonic parity-time symmetry devices

See allHide authors and affiliations

Science Advances  22 Nov 2019:
Vol. 5, no. 11, eaax9144
DOI: 10.1126/sciadv.aax9144

Abstract

Non-Hermitian Hamiltonians may still have real eigenvalues, provided that a combined parity-time (ƤƮ) symmetry exists. The prospect of ƤƮ symmetry has been explored in several physical systems such as photonics, acoustics, and electronics. The eigenvalues in these systems undergo a transition from real to complex at exceptional points (EPs), where the ƤƮ symmetry is broken. Here, we demonstrate the existence of EP in magnonic devices composed of two coupled magnets with different magnon losses. The eigenfrequencies and damping rates change from crossing to anti-crossing at the EP when the coupling strength increases. The magnonic dispersion includes a strong “acoustic-like” mode and a weak “optic-like” mode. Moreover, upon microwave radiation, the ƤƮ magnonic devices act as magnon resonant cavity with unique response compared to conventional magnonic systems.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances