Research ArticleMATERIALS SCIENCE

Trace CO2 capture by an ultramicroporous physisorbent with low water affinity

See allHide authors and affiliations

Science Advances  29 Nov 2019:
Vol. 5, no. 11, eaax9171
DOI: 10.1126/sciadv.aax9171
  • Fig. 1 Structure description, synthesis, and characterization.

    (A) Schematic illustration of the building blocks and pcu network topology of SIFSIX-18-Ni. (B) Left: View of the ultramicropore in SIFSIX-18-Ni-β along the crystallographic c axis (C, gray; N, blue; Si, yellow; F, green; Ni, cyan). Right: Illustration of the hydrophobic cavity (orange) decorated by methyl groups, amines, and inorganic pillars. (C) Experimental and calculated powder x-ray diffractograms of SIFSIX-18-Ni-β. (D) Particle size analysis and scanning electron microscopy image of SIFSIX-18-Ni-β crystals (inset). a.u., arbitrary units.

  • Fig. 2 Single-component sorption, kinetic studies, and “sweet spot” for CO2 binding.

    (A and B) Low-pressure CO2 isotherms at 298 K. (C) Isosteric heat of adsorption profiles for CO2. (D) Gravimetric CO2 uptake (1.0 bar) versus time at 303 K. (E) Dynamic vapor sorption (DVS) isotherms for H2O at 298 K. (F) CO2 binding sites in SIFSIX-18-Ni-β determined by ab initio periodic computation. Dashed lines indicate CO2--HUM internuclear distances from 2.81 to 2.99 Å. Color code: C, gray; H, white; O, red; N, sapphire; Si, yellow; F, cyan; Ni, light blue.

  • Fig. 3 Dynamic gas breakthrough and recyclability tests.

    Dynamic gas breakthrough tests for SIFSIX-18-Ni-β (red), NbOFFIVE-1-Ni (green), Zeolite 13X (blue), SIFSIX-3-Ni (orange), TIFSIX-3-Ni (gray), and ZIF-8 (purple) using (A) dry 1000 ppm, (B) 74% RH 1000 ppm, (C) dry 3000 ppm, and (D) 74% RH 3000 ppm CO2/N2 [v/v = 0.1/99.9% for (A) and (B) and v/v = 0.3/99.7% for (C) and (D)] gas mixtures (298 K; 1 bar; flow rate, 20 cm3 min−1). (E) Bar diagram exhibiting the relative decline in CO2 saturation uptakes (%) of SIFSIX-18-Ni-β versus other physisorbents (dry/74% RH, 1000/3000 ppm CO2/N2). (F) Bar diagram of CO2 retention times (min g−1) under dry/74% RH, 1000/3000 ppm CO2/N2. (G) Decrease in % CO2 uptakes over six consecutive adsorption-desorption cycles for SIFSIX-18-Ni-β (CO2/N2 dry/wet gas mixtures of the following composition: 1000, 3000, 5000, and 10,000 ppm CO2, without/with 74% RH, saturated with N2).

  • Table 1 Isosteric heat of adsorption, gas sorption, and selectivity data.

    MaterialCO2 Qst
    (kJ mol−1)*
    CO2 uptake (298 K)
    (mmol g−1)
    N2
    (298 K,
    1 bar)
    mmol
    (g−1)
    H2O
    (298 K,
    95% RH)
    (mmol
    g−1)
    IAST selectivity
    500
    ppm
    1000
    ppm
    3000 ppm5000
    ppm
    10,000
    ppm
    SCN§SCW||
    Mg-MOF-74420.050.20.50.91.60.85~33.33238N/A
    Zeolite 13X390.40.91.41.72.00.4218.76562N/A
    SIFSIX-18-Ni-β520.40.81.41.82.20.041.64/0.96#N/A**16.2‡‡
    SIFSIX-3-Ni450.40.71.21.51.80.168.801438N/A††
    NbOFFIVE-1-Ni541.31.82.02.12.30.1510.0965280.03‡‡
    TIFSIX-3-Ni491.21.71.91.92.00.187.468090N/A††
    ZIF-827~0.0006<0.005<0.0050.0060.010.11.44#3.10.08

    *Virial fitting of CO2 sorption data collected between 0 and 10 mbar.

    †Data collected on surface measurement systems vacuum DVS unless otherwise stated.

    ‡Selectivity for sorbents was determined by interpolation of raw isotherm data points (see the Supplementary Materials for further details).

    §Selectivity based upon 500 ppm CO2 concentration.

    ||Selectivity based upon 500 ppm CO2 concentration/74% RH.

    ¶Water uptake for Mg-MOF-74 was acquired from (30).

    #Water uptake based upon surface measurement systems intrinsic DVS data.

    **IAST selectivity suggests partial sieving (see the Supplementary Materials).

    ††IAST cannot be calculated due to negative adsorption observed as a result of phase change in the presence of water.

    ‡‡Calculated at 74% RH and 500 ppm.

    Supplementary Materials

    • Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/5/11/eaax9171/DC1

      Supplementary Materials and Methods

      Supplementary Text

      Fig. S1. PXRD of SIFSIX-18-Ni.

      Fig. S2. Variable temperature PXRD of SIFSIX-18-Ni.

      Fig. S3. Comparison of experimental PXRD profiles for SIFSIX-18-Ni-α, SIFSIX-18-Ni-β, and SIFSIX-18-Ni-γ with their calculated patterns and related polymorphs (24) (all recorded at 298 K).

      Fig. S4. Comparison of experimental PXRD profiles for SIFSIX-18-Ni-β, SIFSIX-18-Ni-β (activated, before dosing CO2), and SIFSIX-18-Ni-β (dosed with 1 bar CO2 at 303 K) with the calculated pattern of SIFSIX-18-Ni-β.

      Fig. S5. Comparison of experimental PXRD profiles for SIFSIX-18-Ni-α, SIFSIX-18-Ni-β, and SIFSIX-18-Ni-β (activated, before dosing H2O).

      Fig. S6. Particle size distribution around the mean diameter (~13.94 μm) range of SIFSIX-18-Ni-β.

      Fig. S7. Thermogravimetric analysis profiles of SIFSIX-18-Ni.

      Fig. S8. CO2 sorption isotherms for SIFSIX-18-Ni-β; inset: low pressure range until 0.01 bar.

      Fig. S9. Low-temperature CO2, N2, and O2 sorption isotherms for SIFSIX-18-Ni-β.

      Fig. S10. CO2 and N2 sorption isotherms for SIFSIX-18-Ni-β.

      Fig. S11. CO2 and O2 sorption isotherms for SIFSIX-18-Ni-β.

      Fig. S12. CO2 sorption isotherms at 298 K for SIFSIX-18-Ni-α (only subjected to evacuation after MeOH washing of precursor, i.e., no heating), SIFSIX-18-Ni-β, and SIFSIX-18-Ni-γ.

      Fig. S13. CO2 and N2 sorption isotherms for Mg-MOF-74.

      Fig. S14. CO2 and N2 sorption isotherms for Zeolite 13X.

      Fig. S15. CO2 and N2 sorption isotherms for SIFSIX-3-Ni.

      Fig. S16. CO2 and N2 sorption isotherms for NbOFFIVE-1-Ni.

      Fig. S17. CO2 and N2 sorption isotherms for TIFSIX-3-Ni.

      Fig. S18. CO2 and N2 sorption isotherms for ZIF-8.

      Fig. S19. Fitting of the isotherm data for SIFSIX-18-Ni-β to the virial equation.

      Fig. S20. Fitting of the isotherm data for ZIF-8 to the virial equation.

      Fig. S21. H2O sorption isotherms for SIFSIX-18-Ni-β compared with other HUMs (all recorded at 298 K).

      Fig. S22. Sorption isotherms (298 K) for CO2 and H2O for SIFSIX-18-Ni-β compared with other HUMs; pressure range until 0.03 bar i.e. saturation pressure of H2O at 298 K.

      Fig. S23. H2O sorption isotherms (298 K) of SIFSIX-18-Ni-β for vacuum DVS and intrinsic DVS experiments.

      Fig. S24. H2O sorption isotherms of SIFSIX-18-Ni-β recorded at different temperatures by intrinsic DVS experiments.

      Fig. S25. Humidity-dependent CO2/H2O selectivities (SCW) for SIFSIX-18-Ni-β at 298 K.

      Fig. S26. CO2/H2O selectivities (SCW) for SIFSIX-18-Ni-β under different CO2 concentrations at 298 K.

      Fig. S27. 0.1/99.9 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for SIFSIX-18-Ni-b under dry and 74% RH conditions; flow rate = 20 cm3 min−1.

      Fig. S28. 0.3/99.7 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for SIFSIX-18-Ni-b under dry and 74% RH conditions; flow rate = 20 cm3 min−1.

      Fig. S29. 0.1/99.9 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for NbOFFIVE-1-Ni under dry and 74% RH conditions; flow rate = 20 cm3 min−1.

      Fig. S30. 0.3/99.7 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for NbOFFIVE-1-Ni under dry and 74% RH conditions; flow rate = 20 cm3 min−1.

      Fig. S31. 0.1/99.9 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for Zeolite 13X under dry and 74% RH conditions; flow rate = 20 cm3 min−1.

      Fig. S32. 0.3/99.7 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for Zeolite 13X under dry and 74% RH conditions; flow rate = 20 cm3 min−1.

      Fig. S33. 0.1/99.9 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for SIFSIX-3-Ni under dry and 74% RH conditions; flow rate = 20 cm3 min−1.

      Fig. S34. 0.3/99.7 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for SIFSIX-3-Ni under dry and 74% RH conditions; flow rate = 20 cm3 min−1.

      Fig. S35. 0.1/99.9 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for TIFSIX-3-Ni under dry and 74% RH conditions; flow rate = 20 cm3 min−1.

      Fig. S36. 0.3/99.7 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for TIFSIX-3-Ni under dry and 74% RH conditions; flow rate = 20 cm3 min−1.

      Fig. S37. 1000 ppm CO2/N2 (v/v = 0.1/99.9%) breakthrough profiles for ZIF-8 under dry condition, flow rate = 20 cm3 min−1.

      Fig. S38. 3000 ppm CO2/N2 (v/v = 0.3/99.7%) breakthrough profiles for ZIF-8 under dry condition, flow rate = 20 cm3 min−1.

      Fig. S39. 0.5/99.5 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for SIFSIX-18-Ni-β and NbOFFIVE-1-Ni under dry and 74% RH conditions; flow rate = 10 cm3 min−1.

      Fig. S40. 1/99 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for SIFSIX-18-Ni-β and NbOFFIVE-1-Ni under dry and 74% RH conditions; flow rate = 10 cm3 min−1.

      Fig. S41. Temperature-programmed desorption plot of DAC of CO2 experiment for SIFSIX-18-Ni-β.

      Fig. S42. PXRD profiles for SIFSIX-18-Ni before and after accelerated stability test.

      Fig. S43. BET surface areas as obtained from 77 K N2 adsorption isotherms for SIFSIX-18-Ni and other adsorbents, after accelerated stability test.

      Fig. S44. CO2 adsorption isotherms (298 K) for SIFSIX-18-Ni after accelerated stability test.

      Fig. S45. IAST selectivity comparison for benchmark physisorbents at CO2 (500 ppm): N2 binary mixture; results for SIFSIX-18-Ni-β not included as partial sieving effect is observed.

      Fig. S46. IAST selectivities found in SIFSIX-18-Ni-β for CO2/O2 binary mixtures with varying CO2 concentrations.

      Fig. S47. FTIR spectra of SIFSIX-18-Ni: as-synthesized, activated (β), after CO2 sorption, after H2O sorption, and after 1-hour CO2 dosing at 1 bar.

      Fig. S48. 0.1/99.9 (v/v) CO2/N2 adsorption-desorption recyclability over 6 consecutive cycles for SIFSIX-18-Ni-β under dry and 74% RH conditions.

      Fig. S49. 0.3/99.7 (v/v) CO2/N2 adsorption-desorption recyclability over 6 consecutive cycles for SIFSIX-18-Ni-β under dry and 74% RH conditions.

      Fig. S50. 0.5/99.5 (v/v) CO2/N2 adsorption-desorption recyclability over 6 consecutive cycles for SIFSIX-18-Ni-β under dry and 74% RH conditions.

      Fig. S51. 1/99 (v/v) CO2/N2 adsorption-desorption recyclability over 6 consecutive cycles for SIFSIX-18-Ni-β under dry and 74% RH conditions.

      Fig. S52. CO2 adsorption-desorption recyclability over 100 cycles for SIFSIX-18-Ni-β (1.0 bar CO2; desorption at 348 K): for each cycle, 60 min of isothermal (303 K) gravimetric CO2 uptake recorded on the activated sample.

      Fig. S53. Comparison of gravimetric C-capture kinetics in SIFSIX-18-Ni-β and TEPA-SBA-15 under dry conditions.

      Fig. S54. Comparison of gravimetric C-capture kinetics in SIFSIX-18-Ni-β and TEPA-SBA-15 under wet conditions.

      Fig. S55. Diffractograms for the Le Bail refinement of SIFSIX-18-Ni-α.

      Fig. S56. Diffractograms for the Rietveld refinement of SIFSIX-18-Ni-β.

      Fig. S57. Equilibrated structure of CO2 molecules residing in the cavity of SIFSIX-18-Ni-β corresponding to a loading of 2 CO2 per formula unit.

      Fig. S58. Scheme of the coupled gas mixing system, TGA-based gas uptake analysis, and breakthrough separation analysis unit.

      Table S1. Calculated SCW at 74% RH.

      Table S2. Fitting parameters for SIFSIX-18-Ni-β.

      Table S3. Fitting parameters for ZIF-8.

      Table S4. Dynamic breakthrough experiment details of CO2/N2 at 298 K and 1 bar.

      Table S5. Crystallographic data for SIFSIX-18-Ni.

      References (4145)

    • Supplementary Materials

      This PDF file includes:

      • Supplementary Materials and Methods
      • Supplementary Text
      • Fig. S1. PXRD of SIFSIX-18-Ni.
      • Fig. S2. Variable temperature PXRD of SIFSIX-18-Ni.
      • Fig. S3. Comparison of experimental PXRD profiles for SIFSIX-18-Ni-α, SIFSIX-18-Ni-β, and SIFSIX-18-Ni-γ with their calculated patterns and related polymorphs (24) (all recorded at 298 K).
      • Fig. S4. Comparison of experimental PXRD profiles for SIFSIX-18-Ni-β, SIFSIX-18-Ni-β (activated, before dosing CO2), and SIFSIX-18-Ni-β (dosed with 1 bar CO2 at 303 K) with the calculated pattern of SIFSIX-18-Ni-β.
      • Fig. S5. Comparison of experimental PXRD profiles for SIFSIX-18-Ni-α, SIFSIX-18-Ni-β, and SIFSIX-18-Ni-β (activated, before dosing H2O).
      • Fig. S6. Particle size distribution around the mean diameter (~13.94 μm) range of SIFSIX-18-Ni-β.
      • Fig. S7. Thermogravimetric analysis profiles of SIFSIX-18-Ni.
      • Fig. S8. CO2 sorption isotherms for SIFSIX-18-Ni-β; inset: low pressure range until 0.01 bar.
      • Fig. S9. Low-temperature CO2, N2, and O2 sorption isotherms for SIFSIX-18-Ni-β.
      • Fig. S10. CO2 and N2 sorption isotherms for SIFSIX-18-Ni-β.
      • Fig. S11. CO2 and O2 sorption isotherms for SIFSIX-18-Ni-β.
      • Fig. S12. CO2 sorption isotherms at 298 K for SIFSIX-18-Ni-α (only subjected to evacuation after MeOH washing of precursor, i.e., no heating), SIFSIX-18-Ni-β, and SIFSIX-18-Ni-γ.
      • Fig. S13. CO2 and N2 sorption isotherms for Mg-MOF-74.
      • Fig. S14. CO2 and N2 sorption isotherms for Zeolite 13X.
      • Fig. S15. CO2 and N2 sorption isotherms for SIFSIX-3-Ni.
      • Fig. S16. CO2 and N2 sorption isotherms for NbOFFIVE-1-Ni.
      • Fig. S17. CO2 and N2 sorption isotherms for TIFSIX-3-Ni.
      • Fig. S18. CO2 and N2 sorption isotherms for ZIF-8.
      • Fig. S19. Fitting of the isotherm data for SIFSIX-18-Ni-β to the virial equation.
      • Fig. S20. Fitting of the isotherm data for ZIF-8 to the virial equation.
      • Fig. S21. H2O sorption isotherms for SIFSIX-18-Ni-β compared with other HUMs (all recorded at 298 K).
      • Fig. S22. Sorption isotherms (298 K) for CO2 and H2O for SIFSIX-18-Ni-β compared with other HUMs; pressure range until 0.03 bar i.e. saturation pressure of H2O at 298 K.
      • Fig. S23. H2O sorption isotherms (298 K) of SIFSIX-18-Ni-β for vacuum DVS and intrinsic DVS experiments.
      • Fig. S24. H2O sorption isotherms of SIFSIX-18-Ni-β recorded at different temperatures by intrinsic DVS experiments.
      • Fig. S25. Humidity-dependent CO2/H2O selectivities (SCW) for SIFSIX-18-Ni-β at 298 K.
      • Fig. S26. CO2/H2O selectivities (SCW) for SIFSIX-18-Ni-β under different CO2 concentrations at 298 K.
      • Fig. S27. 0.1/99.9 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for SIFSIX-18-Ni-b under dry and 74% RH conditions; flow rate = 20 cm3 min−1.
      • Fig. S28. 0.3/99.7 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for SIFSIX-18-Ni-b under dry and 74% RH conditions; flow rate = 20 cm3 min−1.
      • Fig. S29. 0.1/99.9 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for NbOFFIVE-1-Ni under dry and 74% RH conditions; flow rate = 20 cm3 min−1.
      • Fig. S30. 0.3/99.7 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for NbOFFIVE-1-Ni under dry and 74% RH conditions; flow rate = 20 cm3 min−1.
      • Fig. S31. 0.1/99.9 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for Zeolite 13X under dry and 74% RH conditions; flow rate = 20 cm3 min−1.
      • Fig. S32. 0.3/99.7 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for Zeolite 13X under dry and 74% RH conditions; flow rate = 20 cm3 min−1.
      • Fig. S33. 0.1/99.9 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for SIFSIX-3-Ni under dry and 74% RH conditions; flow rate = 20 cm3 min−1.
      • Fig. S34. 0.3/99.7 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for SIFSIX-3-Ni under dry and 74% RH conditions; flow rate = 20 cm3 min−1.
      • Fig. S35. 0.1/99.9 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for TIFSIX-3-Ni under dry and 74% RH conditions; flow rate = 20 cm3 min−1.
      • Fig. S36. 0.3/99.7 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for TIFSIX-3-Ni under dry and 74% RH conditions; flow rate = 20 cm3 min−1.
      • Fig. S37. 1000 ppm CO2/N2 (v/v = 0.1/99.9%) breakthrough profiles for ZIF-8 under dry condition, flow rate = 20 cm3 min−1.
      • Fig. S38. 3000 ppm CO2/N2 (v/v = 0.3/99.7%) breakthrough profiles for ZIF-8 under dry condition, flow rate = 20 cm3 min−1.
      • Fig. S39. 0.5/99.5 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for SIFSIX-18-Ni-β and NbOFFIVE-1-Ni under dry and 74% RH conditions; flow rate = 10 cm3 min−1.
      • Fig. S40. 1/99 (v/v) CO2/N2 breakthrough profiles and CO2 effluent purities for SIFSIX-18-Ni-β and NbOFFIVE-1-Ni under dry and 74% RH conditions; flow rate = 10 cm3 min−1.
      • Fig. S41. Temperature‐programmed desorption plot of DAC of CO2 experiment for SIFSIX-18-Ni-β.
      • Fig. S42. PXRD profiles for SIFSIX-18-Ni before and after accelerated stability test.
      • Fig. S43. BET surface areas as obtained from 77 K N2 adsorption isotherms for SIFSIX-18-Ni and other adsorbents, after accelerated stability test.
      • Fig. S44. CO2 adsorption isotherms (298 K) for SIFSIX-18-Ni after accelerated stability test.
      • Fig. S45. IAST selectivity comparison for benchmark physisorbents at CO2 (500 ppm): N2 binary mixture; results for SIFSIX-18-Ni-β not included as partial sieving effect is observed.
      • Fig. S46. IAST selectivities found in SIFSIX-18-Ni-β for CO2/O2 binary mixtures with varying CO2 concentrations.
      • Fig. S47. FTIR spectra of SIFSIX-18-Ni: as-synthesized, activated (β), after CO2 sorption, after H2O sorption, and after 1-hour CO2 dosing at 1 bar.
      • Fig. S48. 0.1/99.9 (v/v) CO2/N2 adsorption-desorption recyclability over 6 consecutive cycles for SIFSIX-18-Ni-β under dry and 74% RH conditions.
      • Fig. S49. 0.3/99.7 (v/v) CO2/N2 adsorption-desorption recyclability over 6 consecutive cycles for SIFSIX-18-Ni-β under dry and 74% RH conditions.
      • Fig. S50. 0.5/99.5 (v/v) CO2/N2 adsorption-desorption recyclability over 6 consecutive cycles for SIFSIX-18-Ni-β under dry and 74% RH conditions.
      • Fig. S51. 1/99 (v/v) CO2/N2 adsorption-desorption recyclability over 6 consecutive cycles for SIFSIX-18-Ni-β under dry and 74% RH conditions.
      • Fig. S52. CO2 adsorption-desorption recyclability over 100 cycles for SIFSIX-18-Ni-β (1.0 bar CO2; desorption at 348 K): for each cycle, 60 min of isothermal (303 K) gravimetric CO2 uptake recorded on the activated sample.
      • Fig. S53. Comparison of gravimetric C-capture kinetics in SIFSIX-18-Ni-β and TEPA-SBA-15 under dry conditions.
      • Fig. S54. Comparison of gravimetric C-capture kinetics in SIFSIX-18-Ni-β and TEPA-SBA-15 under wet conditions.
      • Fig. S55. Diffractograms for the Le Bail refinement of SIFSIX-18-Ni-α.
      • Fig. S56. Diffractograms for the Rietveld refinement of SIFSIX-18-Ni-β.
      • Fig. S57. Equilibrated structure of CO2 molecules residing in the cavity of SIFSIX-18-Ni-β corresponding to a loading of 2 CO2 per formula unit.
      • Fig. S58. Scheme of the coupled gas mixing system, TGA-based gas uptake analysis, and breakthrough separation analysis unit.
      • Table S1. Calculated SCW at 74% RH.
      • Table S2. Fitting parameters for SIFSIX-18-Ni-β.
      • Table S3. Fitting parameters for ZIF-8.
      • Table S4. Dynamic breakthrough experiment details of CO2/N2 at 298 K and 1 bar.
      • Table S5. Crystallographic data for SIFSIX-18-Ni.
      • References (4145)

      Download PDF

      Files in this Data Supplement:

    Stay Connected to Science Advances

    Navigate This Article