Research ArticleLIFE SCIENCES

A conserved ATP- and Scc2/4-dependent activity for cohesin in tethering DNA molecules

See allHide authors and affiliations

Science Advances  27 Nov 2019:
Vol. 5, no. 11, eaay6804
DOI: 10.1126/sciadv.aay6804


Sister chromatid cohesion requires cohesin to act as a protein linker to hold chromatids together. How cohesin tethers chromatids remains poorly understood. We have used optical tweezers to visualize cohesin as it holds DNA molecules. We show that cohesin complexes tether DNAs in the presence of Scc2/Scc4 and ATP demonstrating a conserved activity from yeast to humans. Cohesin forms two classes of tethers: a “permanent bridge” resisting forces over 80 pN and a force-sensitive “reversible bridge.” The establishment of bridges requires physical proximity of dsDNA segments and occurs in a single step. “Permanent” cohesin bridges slide when they occur in trans, but cannot be removed when in cis. Therefore, DNAs occupy separate physical compartments in cohesin molecules. We finally demonstrate that cohesin tetramers can compact linear DNA molecules stretched by very low force (below 1 pN), consistent with the possibility that, like condensin, cohesin is also capable of loop extrusion.

This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances