Abstract
Hydrogels from biological sources are expected as potential structural biomaterials, but most of them are either soft or fragile. Here, a new strategy was developed to construct hydrogels that were both stiff and tough via the formation of the conjoined-network, which was distinct from improving homogeneity or incorporating energy dissipation mechanisms (double-network) approaches. Conjoined-network hydrogels stand for a class of hydrogels consisting of two or more networks that are connected by sharing interconnection points to collaborate and featured as follows: (i) All the composed networks had a similar or equal energy dissipation mechanism, and (ii) these networks were intertwined to effectively distribute stress in the whole system. As a specific example, a biogenic conjoined-network hydrogel was prepared by electrostatically cross-linking the chitosan-gelatin composite with multivalent sodium phytate. The combination of high compressive modulus and toughness was realized at the same time in the chitosan-gelatin-phytate system. Moreover, these physical hydrogels exhibited extraordinary self-recovery and fatigue resistance ability. Our results provide a general strategy for the design of biocompatible stiff and tough conjoined-network hydrogels due to a variety of potential cross-linking mechanisms available (e.g., electrostatic attraction, host-guest interaction, and hydrogen bonding).
- Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).
This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.