Abstract
About 257 million people with chronic infection of hepatitis B virus (HBV) worldwide are at high risk of developing terminal liver diseases. Reactivation of virus replication has been frequently reported in those patient populations receiving imatinib (an Abl kinase inhibitor) or bortezomib (a proteasome inhibitor) to treat concurrent diseases, but the underlying mechanism for this reactivation is unknown. We report that the HBV polymerase protein is recruited by Cdt2 to the cullin-RING ligase 4 (CRL4) for ubiquitination and proteasome degradation and that this process is stimulated by the c-Abl nonreceptor tyrosine kinase. Genetic ablation of the Abl-CRL4Cdt2 axis or pharmaceutical inhibition of this process stabilizes HBV polymerase protein and increases viral loads in HBV-infected liver cancer cell lines. Our study reveals a kinase-dependent activation of CRL4 ubiquitin ligase that can be targeted for blocking HBV replication.
- Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.