Research ArticlePHYSICS

Evidence of pair-density wave in spin-valley locked systems

See allHide authors and affiliations

Science Advances  29 Mar 2019:
Vol. 5, no. 3, eaat4698
DOI: 10.1126/sciadv.aat4698


Cooper pairs with a finite center-of-mass momentum form a remarkable state in which the superconducting order parameter is modulated periodically in space. Although intense interest in such a “pair-density wave” (PDW) state has emerged due to recent discoveries in high Tc superconductors, there is little theoretical understanding of the mechanism driving this exotic state. The challenge is that many competing states lie close in energy in seemingly simple models, such as the Hubbard model, in the strongly correlated regime. Here, we show that inversion symmetry breaking and the resulting spin-valley locking can promote PDWs over more commonly found spin stripes through frustration against magnetic order. Specifically, we find the first robust evidence for a PDW within density matrix renormalization group simulation of a simple fermionic model. Our results point to a tantalizing possibility in hole-doped group VI transition metal dichalcogenides, with spin-valley locked band structure and moderate correlations.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances