Research ArticleCELL BIOLOGY

Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis

See allHide authors and affiliations

Science Advances  20 Mar 2019:
Vol. 5, no. 3, eaau7518
DOI: 10.1126/sciadv.aau7518


Vascular morphogenesis is the formation of endothelial lumenized networks. Cluster-based vasculogenesis of endothelial progenitor cells (EPCs) has been observed in animal models, but the underlying mechanism is unknown. Here, using O2-controllabe hydrogels, we unveil the mechanism by which hypoxia, co-jointly with matrix viscoelasticity, induces EPC vasculogenesis. When EPCs are subjected to a 3D hypoxic gradient ranging from <2 to 5%, they rapidly produce reactive oxygen species that up-regulate proteases, most notably MMP-1, which degrade the surrounding extracellular matrix. EPC clusters form and expand as the matrix degrades. Cell-cell interactions, including those mediated by VE-cadherin, integrin-β2, and ICAM-1, stabilize the clusters. Subsequently, EPC sprouting into the stiffer, intact matrix leads to vascular network formation. In vivo examination further corroborated hypoxia-driven clustering of EPCs. Overall, this is the first description of how hypoxia mediates cluster-based vasculogenesis, advancing our understanding toward regulating vascular development as well as postnatal vasculogenesis in regeneration and tumorigenesis.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text