Research ArticleChemistry

Escaping undesired gas-phase chemistry: Microwave-driven selectivity enhancement in heterogeneous catalytic reactors

See allHide authors and affiliations

Science Advances  15 Mar 2019:
Vol. 5, no. 3, eaau9000
DOI: 10.1126/sciadv.aau9000


Research in solid-gas heterogeneous catalytic processes is typically aimed toward optimization of catalyst composition to achieve a higher conversion and, especially, a higher selectivity. However, even with the most selective catalysts, an upper limit is found: Above a certain temperature, gas-phase reactions become important and their effects cannot be neglected. Here, we apply a microwave field to a catalyst-support ensemble capable of direct microwave heating (MWH). We have taken extra precautions to ensure that (i) the solid phase is free from significant hot spots and (ii) an accurate estimation of both solid and gas temperatures is obtained. MWH allows operating with a catalyst that is significantly hotter than the surrounding gas, achieving a high conversion on the catalyst while reducing undesired homogeneous reactions. We demonstrate the concept with the CO2-mediated oxidative dehydrogenation of isobutane, but it can be applied to any system with significant undesired homogeneous contributions.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances