Research ArticleChemistry

Propane oxidative dehydrogenation over highly selective hexagonal boron nitride catalysts: The role of oxidative coupling of methyl

See allHide authors and affiliations

Science Advances  15 Mar 2019:
Vol. 5, no. 3, eaav8063
DOI: 10.1126/sciadv.aav8063

Abstract

Hexagonal boron nitride (h-BN) catalyst has recently been reported to be highly selective in oxidative dehydrogenation of propane (ODHP) for olefin production. In addition to propene, ethylene also forms with much higher overall selectivities to C2-products than to C1-products. In this work, we report that the reaction pathways over the h-BN catalyst are different from the V-based catalysts in ODHP. Oxidative coupling reaction of methyl, an intermediate from the cleavage of C─C bond of propane, contributes to the high selectivities to C2-products, leading to more C2-products than C1-products over the h-BN catalyst. This work not only provides insight into the reaction mechanisms involved in ODHP over the boron-based catalysts but also sheds light on the selective oxidation of alkanes such as direct upgrading of methane via oxidative upgrading to ethylene or CHxOy on boron-based catalysts.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text