Research ArticleChemistry

Heterogeneous ice nucleation correlates with bulk-like interfacial water

See allHide authors and affiliations

Science Advances  12 Apr 2019:
Vol. 5, no. 4, eaat9825
DOI: 10.1126/sciadv.aat9825


Establishing a direct correlation between interfacial water and heterogeneous ice nucleation (HIN) is essential for understanding the mechanism of ice nucleation. Here, we study the HIN efficiency on polyvinyl alcohol (PVA) surfaces with different densities of hydroxyl groups. We find that the HIN efficiency increases with the decreasing hydroxyl group density. By explicitly considering that interfacial water molecules of PVA films consist of “tightly bound water,” “bound water,” and “bulk-like water,” we reveal that bulk-like water can be correlated directly to the HIN efficiency of surfaces. As the density of hydroxyl groups decreases, bulk-like water molecules can rearrange themselves with a reduced energy barrier into ice due to the diminishing constraint by the hydroxyl groups on the PVA surface. Our study not only provides a new strategy for experimentally controlling the HIN efficiency but also gives another perspective in understanding the mechanism of ice nucleation.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text