Abstract
Machine learning has gained widespread attention as a powerful tool to identify structure in complex, high-dimensional data. However, these techniques are ostensibly inapplicable for experimental systems where data are scarce or expensive to obtain. Here, we introduce a strategy to resolve this impasse by augmenting the experimental dataset with synthetically generated data of a much simpler sister system. Specifically, we study spontaneously emerging local order in crease networks of crumpled thin sheets, a paradigmatic example of spatial complexity, and show that machine learning techniques can be effective even in a data-limited regime. This is achieved by augmenting the scarce experimental dataset with inexhaustible amounts of simulated data of rigid flat-folded sheets, which are simple to simulate and share common statistical properties. This considerably improves the predictive power in a test problem of pattern completion and demonstrates the usefulness of machine learning in bench-top experiments where data are good but scarce.
- Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.