Research ArticleNEUROSCIENCE

GABARAPs dysfunction by autophagy deficiency in adolescent brain impairs GABAA receptor trafficking and social behavior

See allHide authors and affiliations

Science Advances  10 Apr 2019:
Vol. 5, no. 4, eaau8237
DOI: 10.1126/sciadv.aau8237


Dysfunctional mTOR signaling is associated with the pathogenesis of neurodevelopmental and neuropsychiatric disorders. However, it is unclear what molecular mechanisms and pathogenic mediators are involved and whether mTOR-regulated autophagy continues to be crucial beyond neurodevelopment. Here, we selectively deleted Atg7 in forebrain GABAergic interneurons in adolescent mice and unexpectedly found that these mice showed a set of behavioral deficits similar to Atg7 deletion in forebrain excitatory neurons. By unbiased quantitative proteomic analysis, we identified γ-aminobutyric acid receptor–associated protein-like 2 (GABARAPL2) to differentially form high–molecular weight species in autophagy-deficient brains. Further functional analyses revealed a novel pathogenic mechanism involving the p62-dependent sequestration of GABARAP family proteins, leading to the reduction of surface GABAA receptor levels. Our work demonstrates a novel physiological role for autophagy in regulating GABA signaling beyond postnatal neurodevelopment, providing a potential mechanism for the reduced inhibitory inputs observed in neurodevelopmental and neuropsychiatric disorders with mTOR hyperactivation.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances