Origin of giant negative piezoelectricity in a layered van der Waals ferroelectric

See allHide authors and affiliations

Science Advances  19 Apr 2019:
Vol. 5, no. 4, eaav3780
DOI: 10.1126/sciadv.aav3780


Recent research on piezoelectric materials is predominantly devoted to enhancing the piezoelectric coefficient, but overlooks its sign, largely because almost all of them exhibit positive longitudinal piezoelectricity. The only experimentally known exception is ferroelectric polymer poly(vinylidene fluoride) and its copolymers, which condense via weak van der Waals (vdW) interaction and show negative piezoelectricity. Here we report quantitative determination of giant intrinsic negative longitudinal piezoelectricity and electrostriction in another class of vdW solids—two-dimensional (2D) layered ferroelectric CuInP2S6. With the help of single crystal x-ray crystallography and density-functional theory calculations, we unravel the atomistic origin of negative piezoelectricity in this system, which arises from the large displacive instability of Cu ions coupled with its reduced lattice dimensionality. Furthermore, the sizable piezoelectric response and negligible substrate clamping effect of the 2D vdW piezoelectric materials warrant their great potential in nanoscale, flexible electromechanical devices.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text