Research ArticleOPTICS

Room temperature nanocavity laser with interlayer excitons in 2D heterostructures

See allHide authors and affiliations

Science Advances  26 Apr 2019:
Vol. 5, no. 4, eaav4506
DOI: 10.1126/sciadv.aav4506

Abstract

Atomically thin layered two-dimensional (2D) materials have provided a rich library for both fundamental research and device applications. Bandgap engineering and controlled material response can be achieved from artificial heterostructures. Recently, excitonic lasers have been reported using transition metal dichalcogenides; however, the emission is still the intrinsic energy bandgap of the monolayers. Here, we report a room temperature interlayer exciton laser with MoS2/WSe2 heterostructures. The onset of lasing was identified by the distinct kink in the “L-L” curve and the noticeable spectral linewidth collapse. Different from visible emission of intralayer excitons in monolayer components, our laser works in the infrared range, which is fully compatible with the well-established technologies in silicon photonics. Long lifetime of interlayer excitons relaxes the requirement of the cavity quality factor by orders of magnitude. Room temperature interlayer exciton lasers might open new perspectives for developing coherent light sources with tailored optical properties on silicon photonics platforms.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text