Research ArticleCELL BIOLOGY

Transient activation of the UPRER is an essential step in the acquisition of pluripotency during reprogramming

See allHide authors and affiliations

Science Advances  10 Apr 2019:
Vol. 5, no. 4, eaaw0025
DOI: 10.1126/sciadv.aaw0025

Abstract

Somatic cells can be reprogrammed into pluripotent stem cells using the Yamanaka transcription factors. Reprogramming requires both epigenetic landscape reshaping and global remodeling of cell identity, structure, basic metabolic processes, and organelle form and function. We hypothesize that variable regulation of the proteostasis network and its influence upon the protein-folding environment within cells and their organelles is responsible for the low efficiency and stochasticity of reprogramming. We find that the unfolded protein response of the endoplasmic reticulum (UPRER), the mitochondrial UPR, and the heat shock response, which ensure proteome quality during stress, are activated during reprogramming. The UPRER is particularly crucial, and its ectopic, transient activation, genetically or pharmacologically, enhances reprogramming. Last, stochastic activation of the UPRER predicts reprogramming efficiency in naïve cells. Thus, the low efficiency and stochasticity of cellular reprogramming are due partly to the inability to properly initiate the UPRER to remodel the ER and its proteome.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text