Enhancing superconductivity in SrTiO3 films with strain

See allHide authors and affiliations

Science Advances  26 Apr 2019:
Vol. 5, no. 4, eaaw0120
DOI: 10.1126/sciadv.aaw0120


The nature of superconductivity in SrTiO3, the first oxide superconductor to be discovered, remains a subject of intense debate several decades after its discovery. SrTiO3 is also an incipient ferroelectric, and several recent theoretical studies have suggested that the two properties may be linked. To investigate whether such a connection exists, we grew strained, epitaxial SrTiO3 films, which are known to undergo a ferroelectric transition. We show that, for a range of carrier densities, the superconducting transition temperature is enhanced by up to a factor of two compared to unstrained films grown under the same conditions. Moreover, for these films, superconductivity emerges from a resistive state. We discuss the localization behavior in the context of proximity to ferroelectricity. The results point to new opportunities to enhance superconducting transition temperatures in oxide materials.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text