Research ArticlePLANT SCIENCES

Evolution of metabolic novelty: A trichome-expressed invertase creates specialized metabolic diversity in wild tomato

See allHide authors and affiliations

Science Advances  24 Apr 2019:
Vol. 5, no. 4, eaaw3754
DOI: 10.1126/sciadv.aaw3754


Plants produce a myriad of taxonomically restricted specialized metabolites. This diversity—and our ability to correlate genotype with phenotype—makes the evolution of these ecologically and medicinally important compounds interesting and experimentally tractable. Trichomes of tomato and other nightshade family plants produce structurally diverse protective compounds termed acylsugars. While cultivated tomato (Solanum lycopersicum) strictly accumulates acylsucroses, the South American wild relative Solanum pennellii produces copious amounts of acylglucoses. Genetic, transgenic, and biochemical dissection of the S. pennellii acylglucose biosynthetic pathway identified a trichome gland cell–expressed invertase-like enzyme that hydrolyzes acylsucroses (Sopen03g040490). This enzyme acts on the pyranose ring–acylated acylsucroses found in the wild tomato but not on the furanose ring–decorated acylsucroses of cultivated tomato. These results show that modification of the core acylsucrose biosynthetic pathway leading to loss of furanose ring acylation set the stage for co-option of a general metabolic enzyme to produce a new class of protective compounds.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances