Research ArticleCANCER

Pharmacological inhibition of β-catenin/BCL9 interaction overcomes resistance to immune checkpoint blockades by modulating Treg cells

See allHide authors and affiliations

Science Advances  08 May 2019:
Vol. 5, no. 5, eaau5240
DOI: 10.1126/sciadv.aau5240


The Wnt/β-catenin (β-cat) pathway plays a critical role in cancer. Using hydrocarbon-stapled peptide technologies, we aim to develop potent, selective inhibitors targeting this pathway by disrupting the interaction of β-cat with its coactivators B-cell lymphoma 9 (BCL9) and B-cell lymphoma 9-like (B9L). We identified a set of peptides, including hsBCL9CT-24, that robustly inhibits the activity of β-cat and suppresses cancer cell growth. In animal models, these peptides exhibit potent anti-tumor effects, favorable pharmacokinetic profiles, and minimal toxicities. Markedly, these peptides promote intratumoral infiltration of cytotoxic T cells by reducing regulatory T cells (Treg) and increasing dendritic cells (DCs), therefore sensitizing cancer cells to PD-1 inhibitors. Given the strong correlation between Treg infiltration and APC mutation in colorectal cancers, it indicates our peptides can reactivate anti-cancer immune response suppressed by the oncogenic Wnt pathway. In summary, we report a promising strategy for cancer therapy by pharmacological inhibition of the Wnt/β-cat signaling.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text