Dynamically controllable polarity modulation of MoTe2 field-effect transistors through ultraviolet light and electrostatic activation

See allHide authors and affiliations

Science Advances  03 May 2019:
Vol. 5, no. 5, eaav3430
DOI: 10.1126/sciadv.aav3430


Energy band engineering is of fundamental importance in nanoelectronics. Compared to chemical approaches such as doping and surface functionalization, electrical and optical methods provide greater flexibility that enables continuous, reversible, and in situ band tuning on electronic devices of various kinds. In this report, we demonstrate highly effective band modulation of MoTe2 field-effect transistors through the combination of electrostatic gating and ultraviolet light illumination. The scheme can achieve reversible doping modulation from deep n-type to deep p-type with ultrafast switching speed. The treatment also enables noticeable improvement in field-effect mobility by roughly 30 and 2 times for holes and electrons, respectively. The doping scheme also provides good spatial selectivity and allows the building of a photo diode on a single MoTe2 flake with excellent photo detection and photovoltaic performances. The findings provide an effective and generic doping approach for a wide variety of 2D materials.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances