Research ArticleCLIMATOLOGY

Sea-ice algal phenology in a warmer Arctic

See allHide authors and affiliations

Science Advances  08 May 2019:
Vol. 5, no. 5, eaav4830
DOI: 10.1126/sciadv.aav4830


The Arctic sea-ice decline is among the most emblematic manifestations of climate change and is occurring before we understand its ecological consequences. We investigated future changes in algal productivity combining a biogeochemical model for sympagic algae with sea-ice drivers from an ensemble of 18 CMIP5 climate models. Model projections indicate quasi-linear physical changes along latitudes but markedly nonlinear response of sympagic algae, with distinct latitudinal patterns. While snow cover thinning explains the advancement of algal blooms below 66°N, narrowing of the biological time windows yields small changes in the 66°N to 74°N band, and shifting of the ice seasons toward more favorable photoperiods drives the increase in algal production above 74°N. These diverse latitudinal responses indicate that the impact of declining sea ice on Arctic sympagic production is both large and complex, with consequent trophic and phenological cascades expected in the rest of the food web.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text