Research ArticleChemistry

Triggered reversible substitution of adaptive constitutional dynamic networks dictates programmed catalytic functions

See allHide authors and affiliations

Science Advances  10 May 2019:
Vol. 5, no. 5, eaav5564
DOI: 10.1126/sciadv.aav5564


The triggered substitution of networks and their resulting functions play an important mechanism in biological transformations, such as intracellular metabolic pathways and cell differentiation. We describe the triggered, cyclic, reversible intersubstitution of three nucleic acid–based constitutional dynamic networks (CDNs) and the programmed catalytic functions guided by the interconverting CDNs. The transitions between the CDNs are activated by nucleic acid strand displacement processes acting as triggers and counter triggers, leading to the adaptive substitution of the constituents and to emerging catalytic functions dictated by the compositions of the different networks. The quantitative evaluation of the compositions of the different CDNs is achieved by DNAzyme reporters and complementary electrophoresis experiments. By coupling a library of six hairpins to the interconverting CDNs, the CDN-guided, emerging, programmed activities of three different biocatalysts are demonstrated. The study has important future applications in the development of sensor systems, finite-state logic devices, and selective switchable catalytic assemblies.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text