Research ArticleATMOSPHERIC SCIENCE

A light-driven burst of hydroxyl radicals dominates oxidation chemistry in newly activated cloud droplets

See allHide authors and affiliations

Science Advances  01 May 2019:
Vol. 5, no. 5, eaav7689
DOI: 10.1126/sciadv.aav7689

Abstract

Aerosol particles and their interactions with clouds are one of the most uncertain aspects of the climate system. Aerosol processing by clouds contributes to this uncertainty, altering size distributions, chemical composition, and radiative properties. Many changes are limited by the availability of hydroxyl radicals in the droplets. We suggest an unrecognized potentially substantial source of OH formation in cloud droplets. During the first few minutes following cloud droplet formation, the material in aerosols produces a near-UV light–dependent burst of hydroxyl radicals, resulting in concentrations of 0.1 to 3.5 micromolar aqueous OH ([OH]aq). The source of this burst is previously unrecognized chemistry between iron(II) and peracids. The contribution of the “OH burst” to total OH in droplets varies widely, but it ranges up to a factor of 5 larger than previously known sources. Thus, this new process will substantially enhance the impact of clouds on aerosol properties.

This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

View Full Text