Research ArticleAGRICULTURE

Pervasive hybridizations in the history of wheat relatives

See allHide authors and affiliations

Science Advances  01 May 2019:
Vol. 5, no. 5, eaav9188
DOI: 10.1126/sciadv.aav9188


Cultivated wheats are derived from an intricate history of three genomes, A, B, and D, present in both diploid and polyploid species. It was recently proposed that the D genome originated from an ancient hybridization between the A and B lineages. However, this result has been questioned, and a robust phylogeny of wheat relatives is still lacking. Using transcriptome data from all diploid species and a new methodological approach, our comprehensive phylogenomic analysis revealed that more than half of the species descend from an ancient hybridization event but with a more complex scenario involving a different parent than previously thought—Aegilops mutica, an overlooked wild species—instead of the B genome. We also detected other extensive gene flow events that could explain long-standing controversies in the classification of wheat relatives.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text