Research ArticleNEUROSCIENCE

Mechanosensory circuits coordinate two opposing motor actions in Drosophila feeding

See allHide authors and affiliations

Science Advances  22 May 2019:
Vol. 5, no. 5, eaaw5141
DOI: 10.1126/sciadv.aaw5141

Abstract

Mechanoreception detects physical forces in the senses of hearing, touch, and proprioception. Here, we show that labellar mechanoreception wires two motor circuits to facilitate and terminate Drosophila feeding. Using patch-clamp recordings, we identified mechanosensory neurons (MSNs) in taste pegs of the inner labella and taste bristles of the outer labella, both of which rely on the same mechanoreceptor, NOMPC (no mechanoreceptor potential C), to transduce mechanical deflection. Connecting with distinct brain motor circuits, bristle MSNs drive labellar spread to facilitate feeding and peg MSNs elicit proboscis retraction to terminate feeding. Bitter sense modulates these two mechanosensory circuits in opposing manners, preventing labellar spread by bristle MSNs and promoting proboscis retraction by peg MSNs. Together, these labeled-line circuits enable labellar peg and bristle MSNs to use the same mechanoreceptors to direct opposing feeding actions and differentially integrate gustatory information in shaping feeding decisions.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text