Biophysical basis underlying dynamic Lck activation visualized by ZapLck FRET biosensor

See allHide authors and affiliations

Science Advances  19 Jun 2019:
Vol. 5, no. 6, eaau2001
DOI: 10.1126/sciadv.aau2001


Lck plays crucial roles in TCR signaling. We developed a new and sensitive FRET biosensor (ZapLck) to visualize Lck kinase activity with high spatiotemporal resolutions in live cells. ZapLck revealed that 62% of Lck signal was preactivated in T-cells. In Lck-deficient JCam T-cells, Lck preactivation was abolished, which can be restored to 51% by reconstitution with wild-type Lck (LckWT) but not a putatively inactive mutant LckY394F. LckWT also showed a stronger basal Lck-Lck interaction and a slower diffusion rate than LckY394F. Interestingly, aggregation of TCR receptors by antibodies in JCam cells led to a strong activation of reconstituted LckY394F similar to LckWT. Both activated LckY394F and LckWT diffused more slowly and displayed increased Lck-Lck interaction at a similar level. Therefore, these results suggest that a phosphorylatable Y394 is necessary for the basal-level interaction and preactivation of LckWT, while antibody-induced TCR aggregation can trigger the full activation of LckY394F.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances