Abstract
In a study by Murray and Lohman (M&L), the authors suggest that remote sensing data are useful for monitoring land subsidence due to aquifer system compaction. We agree. To infer aquifer dynamics, we provide a more detailed and joint analysis of deformation and groundwater data. Investigating well data in the Tulare Basin, we find that groundwater levels stabilized before 2015 and show that M&L’s observed continued subsidence through July 2016 is likely caused by the delayed compaction of the aquitard. Our analysis suggests the observed 2017 transient uplift is not due to recharge of the aquifer system after heavy winter rainfall because it requires an unrealistic vertical hydraulic gradient nearly five orders of magnitude larger than that typical of Tulare Basin. We find that, regardless of the amount of rainfall, transient annual uplifts of ~3 cm occur in May to June. Using an elastic skeletal storage coefficient of 5 × 10−3, we link this ground uplift to annual groundwater level changes.
- Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.