Visualization of vermilion degradation using pump-probe microscopy

See allHide authors and affiliations

Science Advances  21 Jun 2019:
Vol. 5, no. 6, eaaw3136
DOI: 10.1126/sciadv.aaw3136


Here, we demonstrate the use of pump-probe microscopy for high-resolution studies of vermilion degradation. Vermilion (mostly α-HgS), an important red pigment used in historical paintings, blackens over time, and metallic Hg and β-HgS have been implicated as possible degradation products. Conventional analysis techniques have trouble differentiating α- and β-HgS with sufficiently high spatial resolution. However, pump-probe microscopy can differentiate metallic mercury, α- and β-HgS, and map each distribution on the microscopic scale. We studied artificial degradation of α-HgS; femtosecond-pulsed laser irradiation induces an irreversible phase shift of α- to β-HgS, in which the initial presence of β-HgS grains can increase the rate of conversion in their vicinity. Continuous ultraviolet exposure instead generates both liquid Hg and β-HgS, with a conversion rate that increases with elevated temperatures. Last, we reveal the presence of β-HgS as a natural degradation product in discolored vermilion layers in a 14th century Italian painting.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances