Research ArticlePHYSICS

Atomic-scale interface engineering of Majorana edge modes in a 2D magnet-superconductor hybrid system

See allHide authors and affiliations

Science Advances  26 Jul 2019:
Vol. 5, no. 7, eaav6600
DOI: 10.1126/sciadv.aav6600


Topological superconductors are predicted to harbor exotic boundary states—Majorana zero-energy modes—whose non-Abelian braiding statistics present a new paradigm for the realization of topological quantum computing. Using low-temperature scanning tunneling spectroscopy, here, we report on the direct real-space visualization of chiral Majorana edge states in a monolayer topological superconductor, a prototypical magnet-superconductor hybrid system composed of nanoscale Fe islands of monoatomic height on a Re(0001)-O(2 × 1) surface. In particular, we demonstrate that interface engineering by an atomically thin oxide layer is crucial for driving the hybrid system into a topologically nontrivial state as confirmed by theoretical calculations of the topological invariant, the Chern number.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances