A water lily–inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine

See allHide authors and affiliations

Science Advances  05 Jul 2019:
Vol. 5, no. 7, eaaw7013
DOI: 10.1126/sciadv.aaw7013


In recent years, interfacial solar vapor generation has shown great potential in realizing desalination and wastewater treatment with high energy conversion efficiency. However, high evaporation rate cannot be maintained because of the seemingly unavoidable fouling or salt accumulation on the solar absorbers. The degradation accelerates as the solute concentration increases. Here, we demonstrate a water lily–inspired hierarchical structure that enables efficient evaporation (~80% solar-to-vapor efficiency) out of high-salinity brine [10 weight % (wt %)] and wastewater containing heavy metal ions (30 wt %). More notably, neither decrease in evaporation rate nor fouling on absorbers was observed during the entire evaporation process until water and solute were completely separated. With the capabilities of stable and high-rate evaporation out of high-salinity brine and the effective separation of solute from water, it is expected that this technology can have direct implications in various fields such as wastewater treatment, sea-salt production, and metal recycling.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text