Research ArticleMOLECULAR BIOLOGY

Single-base mapping of m6A by an antibody-independent method

See allHide authors and affiliations

Science Advances  03 Jul 2019:
Vol. 5, no. 7, eaax0250
DOI: 10.1126/sciadv.aax0250

Abstract

N6-methyladenosine (m6A) is one of the most abundant messenger RNA modifications in eukaryotes involved in various pivotal processes of RNA metabolism. The most popular high-throughput m6A identification method depends on the anti-m6A antibody but suffers from poor reproducibility and limited resolution. Exact location information is of great value for understanding the dynamics, machinery, and functions of m6A. Here, we developed a precise and high-throughput antibody-independent m6A identification method based on the m6A-sensitive RNA endoribonuclease recognizing ACA motif (m6A-sensitive RNA-Endoribonuclease–Facilitated sequencing or m6A-REF-seq). Whole-transcriptomic, single-base m6A maps generated by m6A-REF-seq quantitatively displayed an explicit distribution pattern with enrichment near stop codons. We used independent methods to validate methylation status and abundance of individual m6A sites, confirming the high reliability and accuracy of m6A-REF-seq. We applied this method on five tissues from human, mouse, and rat, showing that m6A sites are conserved with single-nucleotide specificity and tend to cluster among species.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text