A transcriptomic atlas of mammalian olfactory mucosae reveals an evolutionary influence on food odor detection in humans

See allHide authors and affiliations

Science Advances  31 Jul 2019:
Vol. 5, no. 7, eaax0396
DOI: 10.1126/sciadv.aax0396


The mammalian olfactory system displays species-specific adaptations to different ecological niches. To investigate the evolutionary dynamics of olfactory sensory neuron (OSN) subtypes across mammalian evolution, we applied RNA sequencing of whole olfactory mucosa samples from mouse, rat, dog, marmoset, macaque, and human. We find that OSN subtypes, representative of all known mouse chemosensory receptor gene families, are present in all analyzed species. Further, we show that OSN subtypes expressing canonical olfactory receptors are distributed across a large dynamic range and that homologous subtypes can be either highly abundant across all species or species/order specific. Highly abundant mouse and human OSN subtypes detect odorants with similar sensory profiles and sense ecologically relevant odorants, such as mouse semiochemicals or human key food odorants. Together, our results allow for a better understanding of the evolution of mammalian olfaction in mammals and provide insights into the possible functions of highly abundant OSN subtypes.

This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances