Research ArticleMATERIALS SCIENCE

Large negative thermo-optic coefficients of a lead halide perovskite

See allHide authors and affiliations

Science Advances  19 Jul 2019:
Vol. 5, no. 7, eaax0786
DOI: 10.1126/sciadv.aax0786

Abstract

Lead halide perovskites are promising semiconductors for high-performance photonic devices. Because the refractive index determines the optimal design and performance limit of the semiconductor devices, the refractive index and its change upon external modulations are the most critical properties for advanced photonic applications. Here, we report that the refractive index of halide perovskite CH3NH3PbCl3 shows a distinct decrease with increasing temperature, i.e., a large negative thermo-optic coefficient, which is opposite to those of conventional inorganic semiconductors. By using this negative coefficient, we demonstrate the compensation of thermally induced optical phase shifts occurring in conventional semiconductors. Furthermore, we observe a large and slow refractive index change in CH3NH3PbCl3 during photoirradiation and clarify its origin to be a very low thermal conductivity supported by theoretical analysis. The giant thermo-optic response of CH3NH3PbCl3 facilitates efficient phase modulation of visible light.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text