Research ArticleCHEMICAL PHYSICS

Three-spin solid effect and the spin diffusion barrier in amorphous solids

See allHide authors and affiliations

Science Advances  26 Jul 2019:
Vol. 5, no. 7, eaax2743
DOI: 10.1126/sciadv.aax2743

Abstract

Dynamic nuclear polarization (DNP) has evolved as the method of choice to enhance NMR signal intensities and to address a variety of otherwise inaccessible chemical, biological and physical questions. Despite its success, there is no detailed understanding of how the large electron polarization is transferred to the surrounding nuclei or where these nuclei are located relative to the polarizing agent. To address these questions we perform an analysis of the three-spin solid effect, and show that it is exquisitely sensitive to the electron-nuclear distances. We exploit this feature and determine that the size of the spin diffusion barrier surrounding the trityl radical in a glassy glycerol–water matrix is <6 Å, and that the protons involved in the initial transfer step are on the trityl molecule. 1H ENDOR experiments indicate that polarization is then transferred in a second step to glycerol molecules in intimate contact with the trityl.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text