Accurate high-throughput screening based on digital protein synthesis in a massively parallel femtoliter droplet array

See allHide authors and affiliations

Science Advances  21 Aug 2019:
Vol. 5, no. 8, eaav8185
DOI: 10.1126/sciadv.aav8185


We report a general strategy based on digital counting principle that enables an efficient acquisition of enzyme mutants with desired activities from just a few clones within a day. We prepared a high-density femtoliter droplet array, consisting of 1 million uniform droplets per 1 cm2 to carry out high-throughput protein synthesis and screening. Single DNA molecules were randomly distributed into each droplet following a Poisson process to initiate the protein synthesis with coupled cell-free transcription and translation reactions and then recovered by a microcapillary. The protein yield in each droplet was proportional to the number of DNA molecules, meaning that droplets with apparent intensities higher than the Poisson distribution–predicted maximum can be readily identified as the exact hits exhibiting the desired increased activity. We improved the activity of an alkaline phosphatase up to near 20-fold by using less than 10 nl of reagents.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances