Research ArticlePHYSICS

Coherent virtual absorption of elastodynamic waves

See allHide authors and affiliations

Science Advances  30 Aug 2019:
Vol. 5, no. 8, eaaw3255
DOI: 10.1126/sciadv.aaw3255


Absorbers suppress reflection and scattering of an incident wave by dissipating its energy into heat. As material absorption goes to zero, the energy impinging on an object is necessarily transmitted or scattered away. Specific forms of temporal modulation of the impinging signal can suppress wave scattering and transmission in the transient regime, mimicking the response of a perfect absorber without relying on material loss. This virtual absorption can store energy with large efficiency in a lossless material and then release it on demand. Here, we extend this concept to elastodynamics and experimentally show that longitudinal motion can be perfectly absorbed using a lossless elastic cavity. This energy is then released symmetrically or asymmetrically by controlling the relative phase of the impinging signals. Our work opens previously unexplored pathways for elastodynamic wave control and energy storage, which may be translated to other phononic and photonic systems of technological relevance.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text