Research ArticleChemistry

Multiplicity conversion based on intramolecular triplet-to-singlet energy transfer

See allHide authors and affiliations

Science Advances  20 Sep 2019:
Vol. 5, no. 9, eaaw5978
DOI: 10.1126/sciadv.aaw5978

Abstract

The ability to convert between molecular spin states is of utmost importance in materials chemistry. Förster-type energy transfer is based on dipole-dipole interactions and can therefore theoretically be used to convert between molecular spin states. Here, a molecular dyad that is capable of transferring energy from an excited triplet state to an excited singlet state is presented. The rate of conversion between these states was shown to be 36 times faster than the rate of emission from the isolated triplet state. This dyad provides the first solid proof that Förster-type triplet-to-singlet energy transfer is possible, revealing a method to increase the rate of light extraction from excited triplet states.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances