Research ArticleChemistry

Multiplicity conversion based on intramolecular triplet-to-singlet energy transfer

See allHide authors and affiliations

Science Advances  20 Sep 2019:
Vol. 5, no. 9, eaaw5978
DOI: 10.1126/sciadv.aaw5978
  • Fig. 1 Structure and energy levels of the dyad.

    (A) The DBA molecule used in this study. (B) Jabłoński diagram showing triplet-to-singlet energy transfer via dipole-dipole interactions, i.e., the Förster-type resonance energy transfer (FRET) mechanism.

  • Fig. 2 Ultraviolet-visible absorption of the studied molecules.

    Absorption spectra of donor (D), acceptor (A), and DBA dissolved in toluene. Also shown is the mathematical sum of the donor and acceptor spectra (D + A).

  • Fig. 3 Emission properties of the studied molecules.

    Time-resolved emission of the (A) donor, (B) acceptor, and (C) DBA dissolved in toluene, excited at 320, 405, and 320 nm, respectively. (D) Time-resolved emission spectrum of DBA. (E) Spectra at defined time intervals after DBA excitation together with donor and acceptor emission spectra. (F) Emission from D and DBA plotted in a CIE diagram. a.u., arbitrary units.

Supplementary Materials

  • Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/5/9/eaaw5978/DC1

    Section S1. Synthesis and characterization

    Section S2. Details of the experimental determination of the rate of energy transfer

    Section S3. Details of the simulation of the rate of energy transfer

    Section S4. X-ray diffraction of 19 and DBA

    Scheme S1. Synthesis of the DBA.

    Table S1. Excited-state lifetimes (fractional contributions in parentheses) and associated emission quantum yields for D, A, and DBA in toluene solutions.

    Fig. S1. Emission quantum yield of A, measured using an integrated sphere.

    Fig. S2. Transient absorption spectroscopy and decay of D in toluene when excited at 320 nm.

    Fig. S3. Transient absorption spectroscopy of DBA in toluene solution when excited at 320 nm.

    Fig. S4. Transient absorption decays of DBA when excited at 320 nm.

    Fig. S5. The simulated rate of energy transfer as a function of dihedral angle (orange line).

    Fig. S6. Lifetime of DBA with different excitation intensity.

    Fig. S7. Structure of the ligand (19), as solved by x-ray diffraction.

    Fig. S8. Structure of DBA (20), as solved by x-ray diffraction.

    Fig. S9. 1H NMR (400 MHz, CDCl3), 6.

    Fig. S10. 13C NMR (101 MHz, CDCl3), 6.

    Fig. S11. 1H NMR (800 MHz, CDCl3), 15.

    Fig. S12. 13C NMR (201 MHz, CDCl3), 15.

    Fig. S13. 31P NMR (162 MHz, CDCl3), 15.

    Fig. S14. 1H NMR (800 MHz, CDCl3), 17.

    Fig. S15. 13C NMR (201 MHz, CDCl3), 17.

    Fig. S16. 1H NMR (800 MHz, DMSO-d6), 18.

    Fig. S17. 13C NMR (201 MHz, DMSO-d6), 18.

    Fig. S18. 1H NMR (800 MHz, DMSO-d6), 19.

    Fig. S19. 13C NMR (201 MHz, DMSO-d6), 19.

    Fig. S20. 1H NMR (800 MHz, CDCl3), 20.

    Fig. S21. 13C NMR (201 MHz, CDCl3), 20.

    Fig. S22. 31P NMR (162 MHz, CDCl3), 20.

    Fig. S23. HRMS (ESI+), 6.

    Fig. S24. HRMS (ESI+), 15.

    Fig. S25. HRMS (ESI+), 17.

    Fig. S26. HRMS (ESI+), 18.

    Fig. S27. HRMS (ESI+), 19.

    Fig. S28. HRMS (ESI+), 20.

    References (2647)

  • Supplementary Materials

    This PDF file includes:

    • Section S1. Synthesis and characterization
    • Section S2. Details of the experimental determination of the rate of energy transfer
    • Section S3. Details of the simulation of the rate of energy transfer
    • Section S4. X-ray diffraction of 19 and DBA
    • Scheme S1. Synthesis of the DBA.
    • Table S1. Excited-state lifetimes (fractional contributions in parentheses) and associated emission quantum yields for D, A, and DBA in toluene solutions.
    • Fig. S1. Emission quantum yield of A, measured using an integrated sphere.
    • Fig. S2. Transient absorption spectroscopy and decay of D in toluene when excited at 320 nm.
    • Fig. S3. Transient absorption spectroscopy of DBA in toluene solution when excited at 320 nm.
    • Fig. S4.Transient absorption decays of DBA when excited at 320 nm.
    • Fig. S5. The simulated rate of energy transfer as a function of dihedral angle (orange line).
    • Fig. S6. Lifetime of DBA with different excitation intensity.
    • Fig. S7. Structure of the ligand (19), as solved by x-ray diffraction.
    • Fig. S8. Structure of DBA (20), as solved by x-ray diffraction.
    • Fig. S9. 1H NMR (400 MHz, CDCl3), 6.
    • Fig. S10. 13C NMR (101 MHz, CDCl3), 6.
    • Fig. S11. 1H NMR (800 MHz, CDCl3), 15.
    • Fig. S12. 13C NMR (201 MHz, CDCl3), 15.
    • Fig. S13. 31P NMR (162 MHz, CDCl3), 15.
    • Fig. S14. 1H NMR (800 MHz, CDCl3), 17.
    • Fig. S15. 13C NMR (201 MHz, CDCl3), 17.
    • Fig. S16. 1H NMR (800 MHz, DMSO-d6), 18.
    • Fig. S17. 13C NMR (201 MHz, DMSO-d6), 18.
    • Fig. S18. 1H NMR (800 MHz, DMSO-d6), 19.
    • Fig. S19. 13C NMR (201 MHz, DMSO-d6), 19.
    • Fig. S20. 1H NMR (800 MHz, CDCl3), 20.
    • Fig. S21. 13C NMR (201 MHz, CDCl3), 20.
    • Fig. S22. 31P NMR (162 MHz, CDCl3), 20.
    • Fig. S23. HRMS (ESI+), 6.
    • Fig. S24. HRMS (ESI+), 15.
    • Fig. S25. HRMS (ESI+), 17.
    • Fig. S26. HRMS (ESI+), 18.
    • Fig. S27. HRMS (ESI+), 19.
    • Fig. S28. HRMS (ESI+), 20.
    • References (2647)

    Download PDF

    Files in this Data Supplement:

Stay Connected to Science Advances

Navigate This Article