Research ArticleENGINEERING

An electrically pumped surface-emitting semiconductor green laser

See allHide authors and affiliations

Science Advances  03 Jan 2020:
Vol. 6, no. 1, eaav7523
DOI: 10.1126/sciadv.aav7523

Abstract

Surface-emitting semiconductor lasers have been widely used in data communications, sensing, and recently in Face ID and augmented reality glasses. Here, we report the first achievement of an all-epitaxial, distributed Bragg reflector (DBR)–free electrically injected surface-emitting green laser by exploiting the photonic band edge modes formed in dislocation-free gallium nitride nanocrystal arrays, instead of using conventional DBRs. The device operates at ~523 nm and exhibits a threshold current of ~400 A/cm2, which is over one order of magnitude lower compared to previously reported blue laser diodes. Our studies open a new paradigm for developing low-threshold surface-emitting laser diodes from the ultraviolet to the deep visible (~200 to 600 nm), wherein the device performance is no longer limited by the lack of high-quality DBRs, large lattice mismatch, and substrate availability.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances