Research ArticleMATERIALS SCIENCE

Exchange bias and quantum anomalous Hall effect in the MnBi2Te4/CrI3 heterostructure

See allHide authors and affiliations

Science Advances  06 Mar 2020:
Vol. 6, no. 10, eaaz0948
DOI: 10.1126/sciadv.aaz0948

Abstract

The layered antiferromagnetic MnBi2Te4 films have been proposed to be an intrinsic quantum anomalous Hall (QAH) insulator with a large gap. It is crucial to open a magnetic gap of surface states. However, recent experiments have observed gapless surface states, indicating the absence of out-of-plane surface magnetism, and thus, the quantized Hall resistance can only be achieved at the magnetic field above 6 T. We propose to induce out-of-plane surface magnetism of MnBi2Te4 films via the magnetic proximity with magnetic insulator CrI3. A strong exchange bias of ∼40 meV originates from the long Cr-eg orbital tails that hybridize strongly with Te p orbitals. By stabilizing surface magnetism, the QAH effect can be realized in the MnBi2Te4/CrI3 heterostructure. Moreover, the high–Chern number QAH state can be achieved by controlling external electric gates. Thus, the MnBi2Te4/CrI3 heterostructure provides a promising platform to realize the electrically tunable zero-field QAH effect.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances