Ultrahigh areal number density solid-state on-chip microsupercapacitors via electrohydrodynamic jet printing

See allHide authors and affiliations

Science Advances  06 Mar 2020:
Vol. 6, no. 10, eaaz1692
DOI: 10.1126/sciadv.aaz1692


Microsupercapacitors (MSCs) have garnered considerable attention as a promising power source for microelectronics and miniaturized portable/wearable devices. However, their practical application has been hindered by the manufacturing complexity and dimensional limits. Here, we develop a new class of ultrahigh areal number density solid-state MSCs (UHD SS–MSCs) on a chip via electrohydrodynamic (EHD) jet printing. This is, to the best of our knowledge, the first study to exploit EHD jet printing in the MSCs. The activated carbon-based electrode inks are EHD jet-printed, creating interdigitated electrodes with fine feature sizes. Subsequently, a drying-free, ultraviolet-cured solid-state gel electrolyte is introduced to ensure electrochemical isolation between the SS–MSCs, enabling dense SS–MSC integration with on-demand (in-series/in-parallel) cell connection on a chip. The resulting on-chip UHD SS–MSCs exhibit exceptional areal number density [36 unit cells integrated on a chip (area = 8.0 mm × 8.2 mm), 54.9 cells cm−2] and areal operating voltage (65.9 V cm−2).

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances