Research ArticleCELL BIOLOGY

A reconstituted mammalian APC-kinesin complex selectively transports defined packages of axonal mRNAs

See allHide authors and affiliations

Science Advances  13 Mar 2020:
Vol. 6, no. 11, eaaz1588
DOI: 10.1126/sciadv.aaz1588

Abstract

Through the asymmetric distribution of messenger RNAs (mRNAs), cells spatially regulate gene expression to create cytoplasmic domains with specialized functions. In neurons, mRNA localization is required for essential processes such as cell polarization, migration, and synaptic plasticity underlying long-term memory formation. The essential components driving cytoplasmic mRNA transport in neurons and mammalian cells are not known. We report the first reconstitution of a mammalian mRNA transport system revealing that the tumor suppressor adenomatous polyposis coli (APC) forms stable complexes with the axonally localized β-actin and β2B-tubulin mRNAs, which are linked to a kinesin-2 via the cargo adaptor KAP3. APC activates kinesin-2, and both proteins are sufficient to drive specific transport of defined mRNA packages. Guanine-rich sequences located in 3′UTRs of axonal mRNAs increase transport efficiency and balance the access of different mRNAs to the transport system. Our findings reveal a minimal set of proteins sufficient to transport mammalian mRNAs.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances