Research ArticleCONDENSED MATTER PHYSICS

Scaling, rotation, and channeling behavior of helical and skyrmion spin textures in thin films of Te-doped Cu2OSeO3

See allHide authors and affiliations

Science Advances  27 Mar 2020:
Vol. 6, no. 13, eaax2138
DOI: 10.1126/sciadv.aax2138

Abstract

Topologically nontrivial spin textures such as vortices, skyrmions, and monopoles are promising candidates as information carriers for future quantum information science. Their controlled manipulation including creation and annihilation remains an important challenge toward practical applications and further exploration of their emergent phenomena. Here, we report controlled evolution of the helical and skyrmion phases in thin films of multiferroic Te-doped Cu2OSeO3 as a function of material thickness, dopant, temperature, and magnetic field using in situ Lorentz phase microscopy. We report two previously unknown phenomena in chiral spin textures in multiferroic Cu2OSeO3: anisotropic scaling and channeling with a fixed-Q state. The skyrmion channeling effectively suppresses the recently reported second skyrmion phase formation at low temperature. Our study provides a viable way toward controlled manipulation of skyrmion lattices, envisaging chirality-controlled skyrmion flow circuits and enabling precise measurement of emergent electromagnetic induction and topological Hall effects in skyrmion lattices.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances