Research ArticleOPTICS

Generation of multiple ultrastable optical frequency combs from an all-fiber photonic platform

See allHide authors and affiliations

Science Advances  27 Mar 2020:
Vol. 6, no. 13, eaax4457
DOI: 10.1126/sciadv.aax4457

Abstract

Frequency-stabilized optical frequency combs have created many high-precision applications. Accurate timing, ultralow phase noise, and narrow linewidth are prerequisites for achieving the ultimate performance of comb-based systems. Ultrastable cavity-based comb-noise stabilization methods have enabled sub–10−15-level frequency instability. However, these methods are complex and alignment sensitive, and their use has been mostly confined to advanced metrology laboratories. Here, we have established a simple, compact, alignment-free, and potentially low-cost all-fiber photonics-based stabilization method for generating multiple ultrastable combs. The achieved performance includes 1-femtosecond timing jitter, few times 10−15-level frequency instability, and <5-hertz linewidth, rivalling those of cavity-stabilized combs. This method features flexibility in configuration: As a representative example, two combs were stabilized with 180-hertz repetition rate difference and ~1-hertz relative linewidth and could be used as an ultrastable, octave-spanning dual-comb spectroscopy source. The demonstrated method constitutes a mechanically robust and reconfigurable tool for generating multiple ultrastable combs suitable for field applications.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances