Ultra-large electric field–induced strain in potassium sodium niobate crystals

See allHide authors and affiliations

Science Advances  27 Mar 2020:
Vol. 6, no. 13, eaay5979
DOI: 10.1126/sciadv.aay5979


Electromechanical coupling in piezoelectric materials allows direct conversion of electrical energy into mechanical energy and vice versa. Here, we demonstrate lead-free (KxNa1−x)NbO3 single crystals with an ultrahigh large-signal piezoelectric coefficient d33* of 9000 pm V−1, which is superior to the highest value reported in state-of-the-art lead-based single crystals (~2500 pm V−1). The enhanced electromechanical properties in our crystals are realized by an engineered compositional gradient in the as-grown crystal, allowing notable reversible non-180° domain wall motion. Moreover, our crystals exhibit temperature-insensitive strain performance within the temperature range of 25°C to 125°C. The enhanced temperature stability of the response also allows the materials to be used in a wider range of applications that exceed the temperature limits of current lead-based piezoelectric crystals.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances