Research ArticleCELL BIOLOGY

DUSP6 SUMOylation protects cells from oxidative damage via direct regulation of Drp1 dephosphorylation

See allHide authors and affiliations

Science Advances  25 Mar 2020:
Vol. 6, no. 13, eaaz0361
DOI: 10.1126/sciadv.aaz0361

Abstract

Imbalanced mitochondrial fission/fusion, a major cause of apoptotic cell death, often results from dysregulation of Drp1 phosphorylation of two serines, S616 and S637. Whereas kinases for Drp1-S616 phosphorylation are well-described, phosphatase(s) for its dephosphorylation remains unclear. Here, we show that dual-specificity phosphatase 6 (DUSP6) dephosphorylates Drp1-S616 independently of its known substrates ERK1/2. DUSP6 keeps Drp1-S616 phosphorylation levels low under normal conditions. The stability and catalytic function of DUSP6 are maintained through conjugation of small ubiquitin-like modifier-1 (SUMO1) and SUMO2/3 at lysine-234 (K234), which is disrupted during oxidation through transcriptional up-regulation of SUMO-deconjugating enzyme, SENP1, causing DUSP6 degradation by ubiquitin-proteasome. deSUMOylation underlies DUSP6 degradation, Drp1-S616 hyperphosphorylation, mitochondrial fragmentation, and apoptosis induced by H2O2 in cultured cells or brain ischemia/reperfusion in mice. Overexpression of DUSP6, but not the SUMOylation-deficient DUSP6K234R mutant, protected cells from apoptosis. Thus, DUSP6 exerts a cytoprotective role by directly dephosphorylating Drp1-S616, which is disrupted by deSUMOylation under oxidation.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances