Breath figure–derived porous semiconducting films for organic electronics

See allHide authors and affiliations

Science Advances  25 Mar 2020:
Vol. 6, no. 13, eaaz1042
DOI: 10.1126/sciadv.aaz1042


Porous semiconductor film morphologies facilitate fluid diffusion and mass transport into the charge-carrying layers of diverse electronic devices. Here, we report the nature-inspired fabrication of several porous organic semiconductor-insulator blend films [semiconductor: P3HT (p-type polymer), C8BTBT (p-type small-molecule), and N2200 (n-type polymer); insulator: PS] by a breath figure patterning method and their broad and general applicability in organic thin-film transistors (OTFTs), gas sensors, organic electrochemical transistors (OECTs), and chemically doped conducting films. Detailed morphological analysis of these films demonstrates formation of textured layers with uniform nanopores reaching the bottom substrate with an unchanged solid-state packing structure. Device data gathered with both porous and dense control semiconductor films demonstrate that the former films are efficient TFT semiconductors but with added advantage of enhanced sensitivity to gases (e.g., 48.2%/ppm for NO2 using P3HT/PS), faster switching speeds (4.7 s for P3HT/PS OECTs), and more efficient molecular doping (conductivity, 0.13 S/m for N2200/PS).

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances