Research ArticleChemistry

Isolation of an elusive phosphatetrahedrane

See allHide authors and affiliations

Science Advances  25 Mar 2020:
Vol. 6, no. 13, eaaz3168
DOI: 10.1126/sciadv.aaz3168
  • Fig. 1 Chart of compounds relevant to the present study.

  • Fig. 2 Synthesis of phosphaketene 2, diphosphene 5, and phosphorus analogs of tricyclopentanone 4 and housene 6 (14).

    r.t., room temperature.

  • Fig. 3 Synthesis of tri-tert-butyl phosphatetrahedrane 1.

    TBA, tetra-n-butyl ammonium; TMA, tetramethylammonium; TMP, tetramethylpiperidide; TMPH, tetramethylpiperidine.

  • Fig. 4 Molecular structures of key intermediates obtained from single-crystal x-ray diffraction experiments.

    (A) Drawing of Na[8] with thermal ellipsoids shown at the 50% probability level. Hydrogen atoms have been omitted. (B) Drawing of compound 9 with thermal ellipsoids shown at the 50% probability level. Hydrogen atoms have been omitted.

  • Fig. 5 31P NMR spectrum (202 MHz, benzene-d6, 25°C) of compound 1.

    Main peak at −487.98 ppm with 13C satellites centered at −488.11 and −487.99 ppm for one- and two-bond couplings, respectively.

  • Fig. 6 Structural drawing of tri-tert-butyl phosphatetrahedrane 1 from a single-crystal x-ray diffraction experiment.

    Thermal ellipsoids are shown at the 50% probability level, and hydrogen atoms have been omitted.

  • Fig. 7 Analysis of bonding in compound 1 using quantum chemical calculations.

    (A) Molecular graph of P(CtBu)3 (1) showing paths linking pairs of bonded atoms, bond critical points as small orange spheres, the phosphorus atom as a large orange sphere, carbon atoms as beige spheres, and hydrogen atoms as white spheres. (B) Standard heats of formation in kcal/mol at 298.15 K for tetrahedrane, P4, and phosphatetrahedrane from G3(MP2, CCSD(T)) calculations (25) performed using GAMESS (37). The phosphatetrahedrane ΔH∘f value can be approximated as the sum of three-quarters the value for tetrahedrane and one-quarter the value for the P4 molecule.

Supplementary Materials

  • Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/6/13/eaaz3168/DC1

    Section S1. Synthetic details and characterization of products

    Section S2. X-ray diffraction studies

    Section S3. Computational studies

    Fig. S1. Labeling scheme for Na[8].

    Fig. S2. 1H NMR (400 MHz, THF-d8, 25°C) spectrum of Na[8].

    Fig. S3. 11B{1H} NMR (128 MHz, THF-d8, 25°C) spectrum of Na[8].

    Fig. S4. 13C{1H} NMR (101 MHz, THF-d8, 25°C) spectrum of Na[8].

    Fig. S5. 31P{1H} NMR (162 MHz, THF-d8, 25°C) spectrum of Na[8].

    Fig. S6. Labeling scheme for 9.

    Fig. S7. 1H NMR (400 MHz, chloroform-d, 25°C) spectrum of 9.

    Fig. S8. 13C{1H} NMR (101 MHz, chloroform-d, 25°C) spectrum of 9.

    Fig. S9. 31P{1H} NMR (162 MHz, chloroform-d, 25°C) spectrum of 9.

    Fig. S10. 31P{1H} NMR (162 MHz, toluene-d8, 25°C) spectrum after heating 9 to 110°C in toluene-d8 for 22 hours.

    Fig. S11. 1H NMR (162 MHz, benzene-d6, 25°C) spectrum after melting 9 at 130°C.

    Fig. S12. 31{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum after melting 9 at 130°C.

    Fig. S13. 31P{1H} NMR (162 MHz, hexanes, 25°C) spectrum of 9 in hexanes after being exposed to 254-nm light for 10 min.

    Fig. S14. 31P{1H} NMR (162 MHz, hexanes, 25°C) spectrum of 9 in hexanes after being exposed to 254-nm light for 45 min.

    Fig. S15. Trap-to-trap distillation of 1.

    Fig. S16. Labeling scheme for 1.

    Fig. S17. 1H NMR (400 MHz, benzene-d6, 25°C) spectrum of 1.

    Fig. S18. 13C{1H} NMR (101 MHz, benzene-d6, 25°C) spectrum of 1 and traces of pentane.

    Fig. S19. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of 1.

    Fig. S20. 1H, 13C-HSQC NMR (400 MHz, benzene-d6, 25°C) spectrum of 1.

    Fig. S21. 1H, 13C-HMBC NMR (400 MHz, benzene-d6, 25°C) spectrum of 1.

    Fig. S22. Comparison of 13C{1H} NMR (125 MHz, benzene-d6, 25°C) and 13C{1H,31P} NMR (125 MHz, benzene-d6, 25°C) spectra of 1.

    Fig. S23. Comparison of 31P{1H} NMR (202 MHz, benzene-d6, 25°C) and 31P{1H,13C} NMR (202 MHz, benzene-d6, 25°C) NMR spectra of 1.

    Fig. S24. 13C, 31P-HSQC NMR (202 MHz, benzene-d6, 25°C) correlation experiment selective for one bond couplings in compound 1.

    Fig. S25. 13C, 31P-HSQC NMR (202 MHz, benzene-d6, 25°C) correlation experiment selective for two bond couplings in compound 1.

    Fig. S26. 1H NMR (400 MHz, benzene-d6, 25°C) spectrum of 1 before distillation.

    Fig. S27. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of crude 1 before distillation.

    Fig. S28. DART HRMS (Q-TOF) data corresponding to [C15H28P]+ and [C15H27]+.

    Fig. S29. Labeling scheme for natural abundance 13C satellites observed in 31P{1H} NMR spectra.

    Fig. S30. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of 1.

    Fig. S31. 31P{1H} NMR (202 MHz, benzene-d6, 25°C) spectrum of 1.

    Fig. S32. Experimental (black) and calculated (red) Raman spectrum of 1.

    Fig. S33. Visualization of the totally symmetric breathing mode (a1), according to pseudo-C3v symmetry, of 1.

    Fig. S34. Labeling scheme for [(tBuC)3P(H)A][OTf].

    Fig. S35. 1H NMR (500 MHz, THF-d8, 25°C) spectrum of [(tBuC)3P(H)A][OTf].

    Fig. S36. 19F NMR (471 MHz, THF-d8, 25°C) spectrum of [(tBuC)3P(H)A][OTf].

    Fig. S37. 31P{1H} NMR (202 MHz, THF-d8, 25°C) spectrum of [(tBuC)3P(H)A][OTf].

    Fig. S38. 31P NMR (202 MHz, THF-d8, 25°C) spectrum of [(tBuC)3P(H)A][OTf].

    Fig. S39. DART HRMS (Q-TOF) data corresponding to [C15H27]+ and [C14H11]+.

    Fig. S40. Initial 31P{1H} NMR (162 MHz, THF, 25°C) spectrum of [(tBuC)3P(H)A][OTf].

    Fig. S41. 31P{1H} NMR (162 MHz, THF, 25°C) spectrum of [(tBuC)3P(H)A][OTf] after 16 hours.

    Fig. S42. Labeling scheme for 10.

    Fig. S43. 1H NMR (400 MHz, benzene-d6, 25°C) spectrum of 10.

    Fig. S44. 19F NMR (471 MHz, benzene-d6, 25°C) spectrum of 10.

    Fig. S45. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of 10.

    Fig. S46. 31P NMR (162 MHz, benzene-d6, 25°C) spectrum of 10.

    Fig. S47. DART HRMS(Q-TOF) data corresponding to [C15H27]+ and [C14H11]+.

    Fig. S48. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of 10.

    Fig. S49. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of 10 after 48 hours.

    Fig. S50. Labeling scheme for 11 and observed by-product.

    Fig. S51. Solvent supressed 1H NMR (400 MHz, THF, 25°C) spectrum of 11.

    Fig. S52. 31P{1H} NMR (162 MHz, THF, 25°C) spectrum of 11.

    Fig. S53. 31P NMR (162 MHz, THF, 25°C) spectrum of 11.

    Fig. S54. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of 1 in benzene-d6 before air exposure.

    Fig. S55. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of 1 in benzene-d6 after being exposed to air for 30 min.

    Fig. S56. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of 1 in benzene-d6 after being exposed to air for 12 hours.

    Fig. S57. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of 1 in benzene-d6 before being heated.

    Fig. S58. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of 1 in benzene-d6 after being heated for 45 min at 75°C.

    Fig. S59. 31P{1H} NMR (162 MHz, toluene-d8, 25°C) spectrum of 1 in toluene-d8 before being heated.

    Fig. S60. 31P{1H} NMR (162 MHz, toluene-d8, 25°C) spectrum of 1 in toluene-d8 after being heated for 3 hours at 130°C.

    Fig. S61. 31P{1H} NMR (162 MHz, pentane, 25°C) spectrum of (tBuC)3P in pentane before being exposed to 254-nm light.

    Fig. S62. 31P{1H} NMR (162 MHz, pentane, 25°C) spectrum of (tBuC)3P in pentane after being exposed to 254-nm light for 5 min.

    Fig. S63. 31P{1H} NMR (162 MHz, THF, 25°C) spectrum of the crude reaction mixture, after treating (tBuC)3P with W(THF)(CO)5.

    Fig. S64. 1H NMR (400 MHz, benzene-d6, 25°C) spectrum of the crude reaction mixture, after treating (tBuC)3P with Ph3B and pyridine.

    Fig. S65. 1H NMR (400 MHz, benzene-d6, 25°C) spectrum of the crude reaction mixture, after treating (tBuC)3P with Ph3B and pyridine.

    Fig. S66. 13C{1H} NMR (101 MHz, benzene-d6, 25°C) spectrum of the crude reaction mixture, after treating (tBuC)3P with Ph3B and pyridine.

    Fig. S67. 31P{1H} NMR (101 MHz, benzene-d6, 25°C) spectrum of the crude reaction mixture, after treating (tBuC)3P with Ph3B and pyridine.

    Fig. S68. Molecular structure of Na[8], with thermal ellipsoids shown at the 50% probability level and hydrogen atoms omitted for clarity.

    Fig. S69. Molecular structure of 9, with thermal ellipsoids shown at the 50% probability level and hydrogen atoms omitted for clarity.

    Fig. S70. Molecular structure of 1, with thermal ellipsoids shown at the 50% probability level and hydrogen atoms omitted for clarity.

    Fig. S71. Crystals of 1 grown by sublimation.

    Table S1. Crystallographic data for Na[8].

    Table S2. Bond lengths (Å) and angles (°) for Na[8].

    Table S3. Crystallographic data for 9.

    Table S4. Bond lengths (Å) and angles (°) for 9.

    Table S5. Crystallographic data for 1.

    Table S6. Bond lengths (Å) and angles (°) for 1.

    Table S7. Coordinates of 1.

    Table S8. Raman frequencies of 1.

    Table S9. Initial coordinates of tetrahedrane.

    Table S10. Initial coordinates of white phosphorus.

    References (3847)

  • Supplementary Materials

    This PDF file includes:

    • Section S1. Synthetic details and characterization of products
    • Section S2. X-ray diffraction studies
    • Section S3. Computational studies
    • Fig. S1. Labeling scheme for Na8.
    • Fig. S2. 1H NMR (400 MHz, THF-d8, 25°C) spectrum of Na8.
    • Fig. S3. 11B{1H} NMR (128 MHz, THF-d8, 25°C) spectrum of Na8.
    • Fig. S4. 13C{1H} NMR (101 MHz, THF-d8, 25°C) spectrum of Na8.
    • Fig. S5. 31P{1H} NMR (162 MHz, THF-d8, 25°C) spectrum of Na8.
    • Fig. S6. Labeling scheme for 9.
    • Fig. S7. 1H NMR (400 MHz, chloroform-d, 25°C) spectrum of 9.
    • Fig. S8. 13C{1H} NMR (101 MHz, chloroform-d, 25°C) spectrum of 9.
    • Fig. S9. 31P{1H} NMR (162 MHz, chloroform-d, 25°C) spectrum of 9.
    • Fig. S10. 31P{1H} NMR (162 MHz, toluene-d8, 25°C) spectrum after heating 9 to 110°C in toluene-d8 for 22 hours.
    • Fig. S11. 1H NMR (162 MHz, benzene-d6, 25°C) spectrum after melting 9 at 130°C.
    • Fig. S12. 31{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum after melting 9 at 130°C.
    • Fig. S13. 31P{1H} NMR (162 MHz, hexanes, 25°C) spectrum of 9 in hexanes after being exposed to 254-nm light for 10 min.
    • Fig. S14. 31P{1H} NMR (162 MHz, hexanes, 25°C) spectrum of 9 in hexanes after being exposed to 254-nm light for 45 min.
    • Fig. S15. Trap-to-trap distillation of 1.
    • Fig. S16. Labeling scheme for 1.
    • Fig. S17. 1H NMR (400 MHz, benzene-d6, 25°C) spectrum of 1.
    • Fig. S18. 13C{1H} NMR (101 MHz, benzene-d6, 25°C) spectrum of 1 and traces of pentane.
    • Fig. S19. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of 1.
    • Fig. S20. 1H, 13C-HSQC NMR (400 MHz, benzene-d6, 25°C) spectrum of 1.
    • Fig. S21. 1H, 13C-HMBC NMR (400 MHz, benzene-d6, 25°C) spectrum of 1.
    • Fig. S22. Comparison of 13C{1H} NMR (125 MHz, benzene-d6, 25°C) and 13C{1H,31P} NMR (125 MHz, benzene-d6, 25°C) spectra of 1.
    • Fig. S23. Comparison of 31P{1H} NMR (202 MHz, benzene-d6, 25°C) and 31P{1H,13C} NMR (202 MHz, benzene-d6, 25°C) NMR spectra of 1.
    • Fig. S24. 13C, 31P-HSQC NMR (202 MHz, benzene-d6, 25°C) correlation experiment selective for one bond couplings in compound 1.
    • Fig. S25. 13C, 31P-HSQC NMR (202 MHz, benzene-d6, 25°C) correlation experiment selective for two bond couplings in compound 1.
    • Fig. S26. 1H NMR (400 MHz, benzene-d6, 25°C) spectrum of 1 before distillation.
    • Fig. S27. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of crude 1 before distillation.
    • Fig. S28. DART HRMS (Q-TOF) data corresponding to C15H28P+ and C15H27+.
    • Fig. S29. Labeling scheme for natural abundance 13C satellites observed in 31P{1H} NMR spectra.
    • Fig. S30. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of 1.
    • Fig. S31. 31P{1H} NMR (202 MHz, benzene-d6, 25°C) spectrum of 1.
    • Fig. S32. Experimental (black) and calculated (red) Raman spectrum of 1.
    • Fig. S33. Visualization of the totally symmetric breathing mode (a1), according to pseudo-C3v symmetry, of 1.
    • Fig. S34. Labeling scheme for (tBuC)3P(H)AOTf.
    • Fig. S35. 1H NMR (500 MHz, THF-d8, 25°C) spectrum of (tBuC)3P(H)AOTf.
    • Fig. S36. 19F NMR (471 MHz, THF-d8, 25°C) spectrum of (tBuC)3P(H)AOTf.
    • Fig. S37. 31P{1H} NMR (202 MHz, THF-d8, 25°C) spectrum of (tBuC)3P(H)AOTf.
    • Fig. S38. 31P NMR (202 MHz, THF-d8, 25°C) spectrum of (tBuC)3P(H)AOTf.
    • Fig. S39. DART HRMS (Q-TOF) data corresponding to C15H27+ and C14H11+.
    • Fig. S40. Initial 31P{1H} NMR (162 MHz, THF, 25°C) spectrum of (tBuC)3P(H)AOTf.
    • Fig. S41. 31P{1H} NMR (162 MHz, THF, 25°C) spectrum of (tBuC)3P(H)AOTf after 16 hours.
    • Fig. S42. Labeling scheme for 10.
    • Fig. S43. 1H NMR (400 MHz, benzene-d6, 25°C) spectrum of 10.
    • Fig. S44. 19F NMR (471 MHz, benzene-d6, 25°C) spectrum of 10.
    • Fig. S45. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of 10.
    • Fig. S46. 31P NMR (162 MHz, benzene-d6, 25°C) spectrum of 10.
    • Fig. S47. DART HRMS(Q-TOF) data corresponding to C15H27+ and C14H11+.
    • Fig. S48. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of 10.
    • Fig. S49. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of 10 after 48 hours.
    • Fig. S50. Labeling scheme for 11 and observed by-product.
    • Fig. S51. Solvent supressed 1H NMR (400 MHz, THF, 25°C) spectrum of 11.
    • Fig. S52. 31P{1H} NMR (162 MHz, THF, 25°C) spectrum of 11.
    • Fig. S53. 31P NMR (162 MHz, THF, 25°C) spectrum of 11.
    • Fig. S54. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of 1 in benzene-d6 before air exposure.
    • Fig. S55. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of 1 in benzene-d6 after being exposed to air for 30 min.
    • Fig. S56. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of 1 in benzene-d6 after being exposed to air for 12 hours.
    • Fig. S57. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of 1 in benzene-d6 before being heated.
    • Fig. S58. 31P{1H} NMR (162 MHz, benzene-d6, 25°C) spectrum of 1 in benzene-d6 after being heated for 45 min at 75°C.
    • Fig. S59. 31P{1H} NMR (162 MHz, toluene-d8, 25°C) spectrum of 1 in toluene-d8 before being heated.
    • Fig. S60. 31P{1H} NMR (162 MHz, toluene-d8, 25°C) spectrum of 1 in toluene-d8 after being heated for 3 hours at 130°C.
    • Fig. S61. 31P{1H} NMR (162 MHz, pentane, 25°C) spectrum of (tBuC)3P in pentane before being exposed to 254-nm light.
    • Fig. S62. 31P{1H} NMR (162 MHz, pentane, 25°C) spectrum of (tBuC)3P in pentane after being exposed to 254-nm light for 5 min.
    • Fig. S63. 31P{1H} NMR (162 MHz, THF, 25°C) spectrum of the crude reaction mixture, after treating (tBuC)3P with W(THF)(CO)5.
    • Fig. S64. 1H NMR (400 MHz, benzene-d6, 25°C) spectrum of the crude reaction mixture, after treating (tBuC)3P with Ph3B and pyridine.
    • Fig. S65. 1H NMR (400 MHz, benzene-d6, 25°C) spectrum of the crude reaction mixture, after treating (tBuC)3P with Ph3B and pyridine.
    • Fig. S66. 13C{1H} NMR (101 MHz, benzene-d6, 25°C) spectrum of the crude reaction mixture, after treating (tBuC)3P with Ph3B and pyridine.
    • Fig. S67. 31P{1H} NMR (101 MHz, benzene-d6, 25°C) spectrum of the crude reaction mixture, after treating (tBuC)3P with Ph3B and pyridine.
    • Fig. S68. Molecular structure of Na8, with thermal ellipsoids shown at the 50% probability level and hydrogen atoms omitted for clarity.
    • Fig. S69. Molecular structure of 9, with thermal ellipsoids shown at the 50% probability level and hydrogen atoms omitted for clarity.
    • Fig. S70. Molecular structure of 1, with thermal ellipsoids shown at the 50% probability level and hydrogen atoms omitted for clarity.
    • Fig. S71. Crystals of 1 grown by sublimation.
    • Table S1. Crystallographic data for Na8.
    • Table S2. Bond lengths (Å) and angles (°) for Na8.
    • Table S3. Crystallographic data for 9.
    • Table S4. Bond lengths (Å) and angles (°) for 9.
    • Table S5. Crystallographic data for 1.
    • Table S6. Bond lengths (Å) and angles (°) for 1.
    • Table S7. Coordinates of 1.
    • Table S8. Raman frequencies of 1.
    • Table S9. Initial coordinates of tetrahedrane.
    • Table S10. Initial coordinates of white phosphorus.
    • References (3847)

    Download PDF

    Files in this Data Supplement:

Stay Connected to Science Advances

Navigate This Article